Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 22

Answer

$$\int_{0}^{2} \int_{y}^{2 y}\left(10+2 x^{2}+2 y^{2}\right) d x d y=\frac{140}{3}$$

Work Step by Step

Given $$\int_{0}^{2} \int_{y}^{2 y}\left(10+2 x^{2}+2 y^{2}\right) d x d y$$ So, we get \begin{aligned} &\int_{0}^{2} \int_{y}^{2 y}\left(10+2 x^{2}+2 y^{2}\right) d x d y \\&=\int_{0}^{2}\left[10 x+\frac{2 x^{3}}{3}+2 y^{2} x\right]_{y}^{2 y} d y\\ &=\int_{0}^{2}\left[\left(20 y+\frac{16}{3} y^{3}+4 y^{3}\right)-\left(10 y+\frac{2}{3} y^{3}+2 y^{3}\right)\right] d y \\ &=\int_{0}^{2}\left[10 y+\frac{20}{3} y^{3}\right] d y\\ &=\left[5 y^{2}+\frac{5 y^{4}}{3}\right]_{0}^{2}\\ &=20+\frac{80}{3}=\frac{140}{3} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.