Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 41

Answer

\[A=5\]

Work Step by Step

\[\begin{align} & \text{} \\ & 2x-3y=0,\text{ }x+y=5,\text{ }y=0 \\ & \text{Graph the equations using Geogebra} \\ & \\ & \text{From the equations} \\ & 2x-3y=0\text{ }\Rightarrow \text{ }y=\frac{2}{3}x,\text{ for the interval }\left[ 0,3 \right] \\ & x+y=5\text{ }\Rightarrow \text{ }y=5-x,\text{ for the interval }\left[ 3,5 \right] \\ & \text{The area of the region is given by} \\ & A=\int_{0}^{3}{\frac{2}{3}xdx}+\int_{3}^{5}{\left( 5-x \right)}dx \\ & \text{Solving we obtain} \\ & A=5 \\ & \\ & \text{Using an iterated integral we can define the area as:} \\ & 2x-3y=0\text{ }\Rightarrow \text{ }x=\frac{3}{2}y \\ & x+y=5\text{ }\Rightarrow \text{ }x=5-y \\ & 0\le y\le 2 \\ & \text{Then,} \\ & A=\int_{0}^{2}{\int_{\frac{3}{2}y}^{5-y}{dx}dy} \\ & \text{Integrating} \\ & A=\int_{0}^{2}{\left( 5-y-\frac{3y}{2} \right)dy} \\ & A=\int_{0}^{2}{\left( 5-\frac{5y}{2} \right)dy} \\ & A=\left[ 5y-\frac{5}{4}{{y}^{2}} \right]_{0}^{2} \\ & A=\left[ 5\left( 2 \right)-\frac{5}{4}{{\left( 2 \right)}^{2}} \right]-\left[ 5\left( 0 \right)-\frac{5}{4}{{\left( 0 \right)}^{2}} \right] \\ & A=5 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.