Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 20

Answer

$$\int_{-4}^{4} \int_{0}^{x^{2}} \sqrt{64-x^{3}} d y d x=\frac{2048}{9} \sqrt{2}$$

Work Step by Step

Given $$\int_{-4}^{4} \int_{0}^{x^{2}} \sqrt{64-x^{3}} d y d x$$ So, we get \begin{align} \int_{-4}^{4} \int_{0}^{x^{2}} \sqrt{64-x^{3}} d y \ d x&=\int_{-4}^{4}\left[y \sqrt{64-x^{3}}\right]_{0}^{2} d x\\ &=\int_{-4}^{4} x^{2} \sqrt{64-x^{3}} d x\\ &=\left[-\frac{2}{9}\left(64-x^{3}\right)^{3 / 2}\right]_{-4}^{4}\\ &=0+\frac{2}{9}(128)^{3 / 2}\\ &=\frac{2048}{9} \sqrt{2} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.