Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 30

Answer

$$\int_{0}^{\pi / 4} \int_{0}^{\cos \theta} 3 r^{2} \sin \theta d r d \theta=\frac{3}{16}$$

Work Step by Step

Given $$\int_{0}^{\pi / 4} \int_{0}^{\cos \theta} 3 r^{2} \sin \theta \ \ d r \ \ d \theta$$ so we have \begin{aligned} I&=\int_{0}^{\pi / 4} \int_{0}^{\cos \theta} 3 r^{2} \sin \theta \ d r \ d \theta\\ &=\int_{0}^{\pi / 4}\left[r^{3} \right]_{0}^{\cos \theta} \sin \theta \ d \theta\\ &=\int_{0}^{\pi / 4} \cos^{3}\theta \ \ \sin \theta \ \ d \theta\\ &=\left[-\frac{\cos ^{4} \theta}{4}\right]_{0}^{\pi / 4}\\ &=-\frac{1}{4}\left[\left(\frac{1}{\sqrt{2}}\right)^{4}-1\right]\\ &=\frac{3}{16} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.