Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 13

Answer

$$\int_{1}^2\int_{0}^4(x^2-2y^2)\hspace{0.5mm}dxdy=\frac{8}{3}$$

Work Step by Step

We will begin with integral with respect to x: $\int_{1}^2\int_{0}^4(x^2-2y^2)\hspace{0.5mm}dxdy=\int_1^2\left(\frac{x^3}{3}-2y^2x\right)\bigg\vert_0^4dy=\int_1^2\left(\left(\frac{64}{3}-8y^2\right)-(0-0)\right)dy=\int_1^2\left(\frac{64}{3}-8y^2\right)dy=\left(\frac{64}{3}y-\frac{8}{3}y^3\right)\bigg\vert_1^2=\left(\frac{128}{3}-\frac{64}{3}\right)-\left(\frac{64}{3}-\frac{8}{3}\right)$ $=\frac{128}{3}-\frac{128}{3}+\frac{8}{3}=\frac{8}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.