Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 7

Answer

$$\int_{e}^{y} \frac{y \ln x}{x} d x =\frac{y}{2}\left[(\ln y)^{2}-y^{2}\right],(y\in (0,\infty))$$

Work Step by Step

Given $$\int_{e}^{y} \frac{y \ln x}{x} d x$$ So, \begin{align} \int_{e}^{y} \frac{y \ln x}{x} d x &=\left[\frac{1}{2} y \ln ^{2} x\right]_{e^{y}}^{y}\\ &=\frac{1}{2} y\left[\ln ^{2} y-\ln ^{2} e^{y}\right]\\ &=\frac{y}{2}\left[(\ln y)^{2}-y^{2}\right],(y \in(0,\infty)) \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.