Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 16

Answer

$$\int_0^{\ln{4}}\int_0^{\ln{3}}e^{x+y}dydx=6$$

Work Step by Step

We will start with the integral with respect to y: $\int_0^{\ln{4}}\int_0^{\ln{3}}e^{x+y}dydx=\int_0^{\ln{4}}\int_0^{\ln{3}}e^xe^ydydx=\int_0^{\ln{4}}\left(e^xe^y\right)\bigg\vert_0^{\ln{3}}dx=\int_0^{\ln{4}}\left(e^xe^{\ln{3}}-e^xe^0\right)dx$ $=\int_0^{\ln{4}}\left(2e^x\right)dx=\left(2e^x\right)\bigg\vert_0^{\ln{4}}=2e^{\ln{4}}-2e^0=8-2=6$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.