Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 6

Answer

$$\int_{x^{3}}^{\sqrt{x}}\left(x^{2}+3 y^{2}\right) d y=x^{5 / 2}+x^{3 / 2}-x^{5}-x^{9}$$

Work Step by Step

Given $$\int_{x^{3}}^{\sqrt{x}}\left(x^{2}+3 y^{2}\right) d y$$ So, \begin{align} &\int_{x^{3}}^{\sqrt{x}}\left(x^{2}+3 y^{2}\right) d y\\ &=\left[x^{2} y+y^{3}\right]_{x^{3}}^{\sqrt{x}}\\ &=\left(x^{2} \sqrt{x}+(\sqrt{x})^{3}\right)-\left(x^{2} x^{3}+\left(x^{3}\right)^{3}\right)\\ &=x^{5 / 2}+x^{3 / 2}-x^{5}-x^{9} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.