Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 24

Answer

$$\int_{0}^{2} \int_{3 y^{2}-6 y}^{2 y-y^{2}} 3 y d x d y=16$$

Work Step by Step

Given$$\int_{0}^{2} \int_{3 y^{2}-6 y}^{2 y-y^{2}} 3 y d x d y$$ So, we get \begin{align} \int_{0}^{2} \int_{3 y^{2}-6 y}^{2 y-y^{2}} 3 y d x d y&=\int_{0}^{2}[3 x y]_{3 y^{2}-6 y}^{2y-y^2} d y\\ &= 3\int_{0}^{2} y\left(2y-y^2-\left(3 y^{2}-6 y\right)\right) d y\\ &=3 \int_{0}^{2}\left(8 y^{2}-4 y^{3}\right) d y\\ &=\left[3\left(\frac{8}{3} y^{3}-y^{4}\right)\right]_{0}^{2}\\ &= 3\left(\frac{8}{3} 2^{3}-2^{4}\right) \\ &=16 \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.