Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 28

Answer

$$\int_{0}^{\pi / 4} \int_{\sqrt{3}}^{\sqrt{3} \cos \theta} r d r d \theta =\frac{3}{8}(1-\frac{ \pi}{2} )$$

Work Step by Step

Given $$\int_{0}^{\pi / 4} \int_{\sqrt{3}}^{\sqrt{3} \cos \theta} r d r d \theta $$ So, we have \begin{aligned} I=\int_{0}^{\pi / 4} \int_{\sqrt{3}}^{\sqrt{3} \cos \theta} r d r d \theta &=\int_{0}^{\pi / 4}\left[\frac{r^{2}}{2}\right]_{\sqrt{3}}^{\sqrt{3} \cos \theta} d \theta\\ &=\int_{0}^{\pi / 4}\left(\frac{3 \cos ^{2} \theta}{2}-\frac{3}{2}\right) d \theta\\ \end{aligned} as $$\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta)$$ So, we get \begin{aligned} I&=\int_{0}^{\pi / 4}\left(\frac{3}{4}(1+\cos 2 \theta)-\frac{3}{2}\right) d \theta \\ &=\int_{0}^{\pi / 4}\left(\frac{3}{4} \cos 2 \theta-\frac{3}{4}\right) d \theta\\ &=\left[\frac{3}{8} \sin 2 \theta-\frac{3}{4} \theta\right]_{0}^{\pi / 4}\\ &=\frac{3}{8} \sin \frac{\pi}{2}-\frac{3 \pi}{16} -(\frac{3}{8} \sin 0-0)\\ &=\frac{3}{8}-\frac{3 \pi}{16} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.