Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 38

Answer

$$A=2$$

Work Step by Step

To find the area of the region, we consider the following integral. \begin{align} A&=\int_{x=2}^{x=5} \int_{y=0}^{y=\frac{1}{ \sqrt{x-1}}} d y \ d x\\ &=\int_{x=2}^{x=5}[y]_{0}^{\frac{1}{ \sqrt{x-1}}} d x\\ &=\int_{x=2}^{x=5} \frac{1}{\sqrt{x-1}} d x\\ &=\int_{x=2}^{x=5} (x-1)^{-\frac{1}{2}} \ d x\\ &= [2 (x-1)^{-\frac{1}{2}+1}]_{2}^{5} \\ &=[2 \sqrt{x-1}]_{2}^{5}\\ &=2 \sqrt{4}-2 \sqrt{1}\\ &=2 \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.