Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 34

Answer

\[\frac{1}{4}\]

Work Step by Step

\[\begin{align} & \int_{0}^{\infty }{\int_{0}^{\infty }{xy{{e}^{-\left( {{x}^{2}}+{{y}^{2}} \right)}}dx}dy} \\ & \int_{0}^{\infty }{y\left[ \int_{0}^{\infty }{x{{e}^{-\left( {{x}^{2}}+{{y}^{2}} \right)}}dx} \right]dy} \\ & \text{Solve }\int_{0}^{\infty }{x{{e}^{-\left( {{x}^{2}}+{{y}^{2}} \right)}}dx}\text{ using the definition of improper integrals} \\ & \int_{0}^{\infty }{x{{e}^{-\left( {{x}^{2}}+{{y}^{2}} \right)}}dx}=\underset{b\to \infty }{\mathop{\lim }}\,\int_{0}^{b}{x{{e}^{-\left( {{x}^{2}}+{{y}^{2}} \right)}}dx} \\ & \underset{b\to \infty }{\mathop{\lim }}\,\int_{0}^{b}{x{{e}^{-\left( {{x}^{2}}+{{y}^{2}} \right)}}dx}=-\frac{1}{2}\underset{b\to \infty }{\mathop{\lim }}\,\int_{0}^{b}{\left( -2x \right){{e}^{-\left( {{x}^{2}}+{{y}^{2}} \right)}}dx} \\ & =-\frac{1}{2}\underset{b\to \infty }{\mathop{\lim }}\,\left[ {{e}^{-\left( {{x}^{2}}+{{y}^{2}} \right)}} \right]_{0}^{b} \\ & =-\frac{1}{2}\underset{b\to \infty }{\mathop{\lim }}\,\left[ {{e}^{-\left( {{b}^{2}}+{{y}^{2}} \right)}}-{{e}^{-\left( {{0}^{2}}+{{y}^{2}} \right)}} \right] \\ & =-\frac{1}{2}\underset{b\to \infty }{\mathop{\lim }}\,\left[ {{e}^{-\left( {{b}^{2}}+{{y}^{2}} \right)}}-{{e}^{-{{y}^{2}}}} \right] \\ & \text{Evaluate the limit when }b\to \infty \\ & =-\frac{1}{2}\left[ {{e}^{-\infty }}-{{e}^{-{{y}^{2}}}} \right] \\ & =\frac{1}{2}{{e}^{-{{y}^{2}}}} \\ & \text{Then,} \\ & \int_{0}^{\infty }{y\left[ \int_{0}^{\infty }{x{{e}^{-\left( {{x}^{2}}+{{y}^{2}} \right)}}dx} \right]dy}=\int_{0}^{\infty }{y\left[ \frac{1}{2}{{e}^{-{{y}^{2}}}} \right]dy} \\ & =\frac{1}{2}\int_{0}^{\infty }{y{{e}^{-{{y}^{2}}}}dy} \\ & =-\frac{1}{4}\int_{0}^{\infty }{\left( -2y \right){{e}^{-{{y}^{2}}}}dy} \\ & =-\frac{1}{4}\left[ {{e}^{-{{y}^{2}}}} \right]_{0}^{\infty } \\ & =-\frac{1}{4}\left[ {{e}^{-{{\left( \infty \right)}^{2}}}}-{{e}^{0}} \right] \\ & =-\frac{1}{4}\left[ {{e}^{-\infty }}-{{e}^{0}} \right] \\ & =-\frac{1}{4}\left[ 0-1 \right] \\ & =\frac{1}{4} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.