Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 43

Answer

\[A=\frac{9}{2}\]

Work Step by Step

\[\begin{align} & \text{From the graph the region R is given by} \\ & x+2\le y\le -{{x}^{2}}+4 \\ & -2\le x\le 1 \\ & \text{Using an iterated integral we can define the area as:} \\ & A=\int_{-2}^{1}{\int_{x+2}^{-{{x}^{2}}+4}{dy}dx} \\ & \text{Integrating} \\ & A=\int_{-2}^{1}{\left( -{{x}^{2}}+4-x-2 \right)dx} \\ & A=\int_{-2}^{1}{\left( -{{x}^{2}}-x+2 \right)dx} \\ & A=\left[ -\frac{1}{3}{{x}^{3}}-\frac{1}{2}{{x}^{2}}+2x \right]_{-2}^{1} \\ & A=\left[ -\frac{1}{3}{{\left( 1 \right)}^{3}}-\frac{1}{2}{{\left( 1 \right)}^{2}}+2\left( 1 \right) \right]-\left[ -\frac{1}{3}{{\left( -2 \right)}^{3}}-\frac{1}{2}{{\left( -2 \right)}^{2}}+2\left( -2 \right) \right] \\ & A=\frac{7}{6}+\frac{10}{3} \\ & A=\frac{9}{2} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.