Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 32

Answer

$$\int_{0}^{3} \int_{0}^{\infty} \frac{x^{2}}{1+y^{2}} d y \ d x=\frac{9 \pi}{2}$$

Work Step by Step

Given $$\int_{0}^{3} \int_{0}^{\infty} \frac{x^{2}}{1+y^{2}} d y \ d x $$ So, we get \begin{align} \int_{0}^{3} \int_{0}^{\infty} \frac{x^{2}}{1+y^{2}} d y \ d x &= \int_{0}^{3} x^{2}\int_{0}^{\infty} \frac{1}{1+y^{2}} d y \ d x\\&=\int_{0}^{3}x^{2}\left[ \arctan y\right]_{0}^{\infty} d x\\ &=\int_{0}^ {3} x^{2}\left( \arctan \infty - \arctan 0\right) d x\\ &=\int_{0}^ {3} x^{2}\left(\frac{\pi}{2}-0\right) d x\\ &=\left[\frac{\pi}{2} \cdot \frac{x^{3}}{3}\right]_{0}^{3}\\ &=\frac{9 \pi}{2} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.