Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 9

Answer

Improper, converges to 4.

Work Step by Step

The integral has finite bounds so we look at the Definition of Improper Integrals with Infinite Discontinuities. $f(x)=\displaystyle \frac{1}{\sqrt{x}}$ has an infinite discontinuity at $x=0$, so the case 2 applies: 2. If $f$ is continuous on the interval $(a, b]$ and has an infinite discontinuity at $ a$, then $\displaystyle \int_{a}^{b}f(x)dx=\lim_{c\rightarrow a^{+}}\int_{c}^{b}f(x)dx$. This is an improper integral. $\displaystyle \int_{0}^{4}\frac{1}{\sqrt{x}}dx=\lim_{c\rightarrow 0^{+}}\int_{c}^{4}\frac{1}{\sqrt{x}}dx$ $=\displaystyle \lim_{c\rightarrow 0^{+}}\int_{c}^{4}x^{-1/2}dx$ $=\displaystyle \lim_{c\rightarrow 0^{+}}[\frac{1}{1/2}x^{1/2}]_{c}^{4}$ $=\displaystyle \lim_{c\rightarrow 0^{+}}[2\sqrt{x}]_{c}^{4}$ $=2\displaystyle \lim_{c\rightarrow 0^{+}}(2-\sqrt{c})$ $= 2(2-0)$ $=4$ Converges to 4.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.