Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 43

Answer

$$\ln 3$$

Work Step by Step

$$\eqalign{ & \int_3^5 {\frac{1}{{\sqrt {{x^2} - 9} }}} dx \cr & \frac{1}{{\sqrt {36 - {x^2}} }}{\text{ has an infinite discontinuity at }}x = 3,{\text{ so we can write}} \cr & \int_3^5 {\frac{1}{{\sqrt {{x^2} - 9} }}} dx = \mathop {\lim }\limits_{b \to {3^ + }} \int_b^5 {\frac{1}{{\sqrt {{x^2} - 9} }}} dx \cr & {\text{Integrate by tables, use }}\int {\frac{1}{{\sqrt {{x^2} - {a^2}} }}} dx = \ln \left| {x + \sqrt {{x^2} - {a^2}} } \right| + C \cr & \mathop {\lim }\limits_{b \to {3^ + }} \int_b^5 {\frac{1}{{\sqrt {{x^2} - 9} }}} d\theta = \mathop {\lim }\limits_{b \to {3^ + }} \left[ {\ln \left| {x + \sqrt {{x^2} - 9} } \right|} \right]_b^5 \cr & = \mathop {\lim }\limits_{b \to {3^ + }} \left[ {\ln \left| {5 + \sqrt {{5^2} - 9} } \right| - \ln \left| {b + \sqrt {{b^2} - 9} } \right|} \right] \cr & = \mathop {\lim }\limits_{b \to {3^ + }} \left[ {\ln \left| {5 + 4} \right| - \ln \left| {b + \sqrt {{b^2} - 9} } \right|} \right] \cr & = \mathop {\lim }\limits_{b \to {3^ + }} \left[ {\ln 9 - \ln \left| {b + \sqrt {{b^2} - 9} } \right|} \right] \cr & {\text{Evaluate the limit when }}b \to 6 \cr & = \ln 9 - \ln \left| {3 + \sqrt {{3^2} - 9} } \right| \cr & = \ln 9 - \ln 3 \cr & = \ln 3 \cr & {\text{The following graph confirms the result}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.