Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 47

Answer

$$\frac{{2\pi \sqrt 6 }}{3}$$

Work Step by Step

$$\eqalign{ & \int_0^\infty {\frac{4}{{\sqrt x \left( {x + 6} \right)}}} dx \cr & \frac{4}{{\sqrt x \left( {x + 6} \right)}}{\text{ has an infinite discontinuity at }}x = 0,{\text{so we can write}} \cr & \int_0^\infty {\frac{4}{{\sqrt x \left( {x + 6} \right)}}} dx = \mathop {\lim }\limits_{a \to {0^ + }} \int_a^1 {\frac{4}{{\sqrt x \left( {x + 6} \right)}}} dx + \mathop {\lim }\limits_{b \to \infty } \int_1^b {\frac{4}{{\sqrt x \left( {x + 6} \right)}}} dx \cr & \cr & *{\text{Integrating }}\int {\frac{4}{{\sqrt x \left( {x + 6} \right)}}dx} \cr & {\text{Let }}{u^2} = x,{\text{ }}2udu = dx \cr & \int {\frac{4}{{\sqrt x \left( {x + 6} \right)}}dx} = \int {\frac{4}{{\sqrt {{u^2}} \left( {{u^2} + 6} \right)}}\left( {2u} \right)du} = \int {\frac{8}{{{u^2} + 6}}du} \cr & = \frac{8}{{\sqrt 6 }}{\tan ^{ - 1}}\left( {\frac{u}{{\sqrt 6 }}} \right) + C \cr & = \frac{8}{{\sqrt 6 }}{\tan ^{ - 1}}\left( {\frac{{\sqrt x }}{{\sqrt 6 }}} \right) + C,{\text{ then}} \cr & \cr & \mathop {\lim }\limits_{a \to {0^ + }} \int_a^1 {\frac{4}{{\sqrt x \left( {x + 6} \right)}}} dx + \mathop {\lim }\limits_{b \to \infty } \int_1^b {\frac{4}{{\sqrt x \left( {x + 6} \right)}}} dx \cr & = \mathop {\lim }\limits_{a \to {0^ + }} \left[ {\frac{8}{{\sqrt 6 }}{{\tan }^{ - 1}}\left( {\frac{{\sqrt x }}{{\sqrt 6 }}} \right)} \right]_a^1 + \mathop {\lim }\limits_{b \to \infty } \left[ {\frac{8}{{\sqrt 6 }}{{\tan }^{ - 1}}\left( {\frac{{\sqrt x }}{{\sqrt 6 }}} \right)} \right]_1^b \cr & = \frac{8}{{\sqrt 6 }}\mathop {\lim }\limits_{a \to {0^ + }} \left[ {{{\tan }^{ - 1}}\left( {\frac{1}{{\sqrt 6 }}} \right) - {{\tan }^{ - 1}}\left( {\frac{a}{{\sqrt 6 }}} \right)} \right] \cr & + \frac{8}{{\sqrt 6 }}\mathop {\lim }\limits_{b \to \infty } \left[ {{{\tan }^{ - 1}}\left( {\frac{{\sqrt b }}{{\sqrt 6 }}} \right) - {{\tan }^{ - 1}}\left( {\frac{1}{{\sqrt 6 }}} \right)} \right] \cr & {\text{Evaluate the limits}} \cr & = - \frac{8}{{\sqrt 6 }}{\tan ^{ - 1}}\left( {\frac{{{0^ + }}}{{\sqrt 6 }}} \right) + \frac{8}{{\sqrt 6 }}{\tan ^{ - 1}}\left( {\frac{{\sqrt \infty }}{{\sqrt 6 }}} \right) \cr & = - \frac{8}{{\sqrt 6 }}\left( 0 \right) + \frac{8}{{\sqrt 6 }}\left( {\frac{\pi }{2}} \right) \cr & = \frac{{4\pi }}{{\sqrt 6 }} \cr & {\text{Rationalizing}} \cr & = \frac{{4\pi \sqrt 6 }}{{\sqrt 6 \sqrt 6 }} \cr & = \frac{{2\pi \sqrt 6 }}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.