Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 35

Answer

$$0$$

Work Step by Step

$$\eqalign{ & \int_0^2 {\frac{1}{{\root 3 \of {x - 1} }}} dx \cr & \frac{1}{{\root 3 \of {x - 1} }}{\text{ has an infinite discontinuity at }}x = 1,{\text{ so we can write}} \cr & \int_0^2 {\frac{1}{{\root 3 \of {x - 1} }}} dx = \mathop {\lim }\limits_{b \to {1^ - }} \int_0^b {\frac{1}{{\root 3 \of {x - 1} }}} dx + \mathop {\lim }\limits_{a \to {1^ + }} \int_a^2 {\frac{1}{{\root 3 \of {x - 1} }}} dx \cr & {\text{Integrate}} \cr & = \mathop {\lim }\limits_{b \to {1^ - }} \left[ {\frac{3}{2}{{\left( {x - 1} \right)}^{2/3}}} \right]_0^b + \mathop {\lim }\limits_{a \to {1^ + }} \left[ {\frac{3}{2}{{\left( {x - 1} \right)}^{2/3}}} \right]_a^2 \cr & = \mathop {\lim }\limits_{b \to {1^ - }} \left[ {\frac{3}{2}{{\left( {b - 1} \right)}^{2/3}} - \frac{3}{2}{{\left( {0 - 1} \right)}^{2/3}}} \right] + \mathop {\lim }\limits_{a \to {1^ + }} \left[ {\frac{3}{2}{{\left( {2 - 1} \right)}^{2/3}} - \frac{3}{2}{{\left( {a - 1} \right)}^{2/3}}} \right]_a^2 \cr & = \mathop {\lim }\limits_{b \to {1^ - }} \left[ {\frac{3}{2}{{\left( {b - 1} \right)}^{2/3}} - \frac{3}{2}} \right] + \mathop {\lim }\limits_{a \to {1^ + }} \left[ {\frac{3}{2} - \frac{3}{2}{{\left( {a - 1} \right)}^{2/3}}} \right]_a^2 \cr & {\text{Evaluate limits}} \cr & = \left[ {\frac{3}{2}{{\left( {1 - 1} \right)}^{2/3}} - \frac{3}{2}} \right] + \left[ {\frac{3}{2} - \frac{3}{2}{{\left( {1 - 1} \right)}^{2/3}}} \right] \cr & = - \frac{3}{2} + \frac{3}{2} \cr & = 0 \cr & {\text{The following graph confirms the result}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.