Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 48

Answer

$${\text{The improper integral diverges}}{\text{.}}$$

Work Step by Step

$$\eqalign{ & \int_1^\infty {\frac{1}{{x\ln x}}} dx \cr & \frac{1}{{x\ln x}}{\text{ has an infinite discontinuity at }}x = 1,{\text{so we can write}} \cr & \int_1^\infty {\frac{1}{{x\ln x}}} dx = \mathop {\lim }\limits_{a \to {1^ + }} \int_a^2 {\frac{1}{{x\ln x}}} dx + \mathop {\lim }\limits_{b \to \infty } \int_2^b {\frac{1}{{x\ln x}}} dx \cr & {\text{Integrating}} \cr & = \mathop {\lim }\limits_{a \to {1^ + }} \left[ {\ln \left| {\ln x} \right|} \right]_a^2 + \mathop {\lim }\limits_{b \to \infty } \left[ {\ln \left| {\ln x} \right|} \right]_2^b \cr & = \mathop {\lim }\limits_{a \to {1^ + }} \left[ {\ln \left| {\ln 2} \right| - \ln \left| {\ln a} \right|} \right] + \mathop {\lim }\limits_{b \to \infty } \left[ {\ln \left| {\ln b} \right| - \ln \left| {\ln 2} \right|} \right] \cr & {\text{Evaluate the limits}} \cr & = \ln \left| {\ln 2} \right| - \ln \left| {\ln {1^ + }} \right| + \ln \left| {\ln \infty } \right| - \ln \left| {\ln 2} \right| \cr & = - \ln \left| {\ln {1^ + }} \right| + \ln \left| {\ln \infty } \right| \cr & = - \ln \left| {{0^ + }} \right| + \ln \left| \infty \right| \cr & {\text{The improper integral diverges}}{\text{.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.