Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 36

Answer

$$12\sqrt 2 $$

Work Step by Step

$$\eqalign{ & \int_0^8 {\frac{3}{{\sqrt {8 - x} }}} dx \cr & \frac{3}{{\sqrt {8 - x} }}{\text{ has an infinite discontinuity at }}x = 8,{\text{ so we can write}} \cr & \int_0^8 {\frac{3}{{\sqrt {8 - x} }}} dx = \mathop {\lim }\limits_{b \to {8^ - }} \int_0^b {\frac{3}{{\sqrt {8 - x} }}} dx \cr & {\text{Integrate}} \cr & = - 3\mathop {\lim }\limits_{b \to {8^ - }} \left[ {2\sqrt {8 - x} } \right]_0^b \cr & = - 6\mathop {\lim }\limits_{b \to {8^ - }} \left[ {\sqrt {8 - x} } \right]_0^b \cr & = - 6\mathop {\lim }\limits_{b \to {8^ - }} \left[ {\sqrt {8 - b} - \sqrt {8 - 0} } \right] \cr & = - 6\mathop {\lim }\limits_{b \to {8^ - }} \left[ {\sqrt {8 - b} - 2\sqrt 2 } \right] \cr & {\text{Evaluate limits}} \cr & = - 6\left( {\sqrt {8 - 8} - 2\sqrt 2 } \right) \cr & = 12\sqrt 2 \cr & {\text{The following graph confirms the result}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.