Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 45

Answer

$$\frac{\pi }{6}$$

Work Step by Step

$$\eqalign{ & \int_3^\infty {\frac{1}{{x\sqrt {{x^2} - 9} }}} dx \cr & \frac{1}{{x\sqrt {{x^2} - 9} }}{\text{ has an infinite discontinuity at }}x = 3,{\text{so we can write}} \cr & \int_3^\infty {\frac{1}{{x\sqrt {{x^2} - 9} }}} dx = \mathop {\lim }\limits_{a \to {3^ + }} \int_a^4 {\frac{1}{{x\sqrt {{x^2} - 9} }}} dx + \mathop {\lim }\limits_{b \to \infty } \int_4^b {\frac{1}{{x\sqrt {{x^2} - 9} }}} dx \cr & {\text{Integrate, recall that }}\int {\frac{{dx}}{{x\sqrt {{x^2} - {a^2}} }} = \frac{1}{a}\operatorname{arcsec} \left( {\frac{x}{a}} \right) + C} \cr & = \mathop {\lim }\limits_{a \to {3^ + }} \left[ {\frac{1}{3}\operatorname{arcsec} \left( {\frac{x}{3}} \right)} \right]_a^4 + \mathop {\lim }\limits_{b \to \infty } \left[ {\frac{1}{3}\operatorname{arcsec} \left( {\frac{x}{3}} \right)} \right]_4^b \cr & = \frac{1}{3}\mathop {\lim }\limits_{a \to {3^ + }} \left[ {\operatorname{arcsec} \left( {\frac{4}{3}} \right) - \operatorname{arcsec} \left( {\frac{a}{3}} \right)} \right] \cr & + \frac{1}{3}\mathop {\lim }\limits_{b \to \infty } \left[ {\operatorname{arcsec} \left( {\frac{b}{3}} \right) - \operatorname{arcsec} \left( {\frac{4}{3}} \right)} \right] \cr & {\text{Evaluate the limits}} \cr & = \frac{1}{3}\operatorname{arcsec} \left( {\frac{4}{3}} \right) - \frac{1}{3}\operatorname{arcsec} \left( {\frac{{{3^ + }}}{3}} \right) + \frac{1}{3}\operatorname{arcsec} \left( {\frac{\infty }{3}} \right) \cr & - \frac{1}{3}\operatorname{arcsec} \left( {\frac{4}{3}} \right) \cr & = - \frac{1}{3}\operatorname{arcsec} \left( {\frac{{{3^ + }}}{3}} \right) + \frac{1}{3}\operatorname{arcsec} \left( {\frac{\infty }{3}} \right) \cr & = - \frac{1}{3}\left( 0 \right) + \frac{1}{3}\left( {\frac{\pi }{2}} \right) \cr & = \frac{\pi }{6} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.