Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 20

Answer

Diverges.

Work Step by Step

From the Definition of Improper Integrals with Infinite Integration Limits Case 1. If $f$ is continuous on the interval $[a, \infty)$, then $\displaystyle \int_{a}^{\infty}f(x)d\mathrm{x}=\lim_{b\rightarrow\infty}\int_{a}^{b}f(x)dx$. --- $\displaystyle \frac{4}{\sqrt[4]{x}}$ is continuous on $[a, \infty)$. $\displaystyle \int_{1}^{\infty}\frac{4}{\sqrt[4]{x}}dx=\lim_{b\rightarrow\infty}\int_{1}^{b}4x^{-1/4}dx$ $=\displaystyle \lim_{b\rightarrow\infty}[\frac{16}{3}x^{3/4}]_{1}^{b}$ $=\displaystyle \lim_{b\rightarrow\infty}[\frac{16}{3}x^{3/4}]_{1}^{b}$ $=\infty -\displaystyle \frac{16}{3}$ $=\infty$ Diverges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.