Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 30

Answer

$$\infty $$

Work Step by Step

$$\eqalign{ & \int_0^\infty {\frac{{{e^x}}}{{1 + {e^x}}}dx} \cr & {\text{By the Definition of Improper Integrals with Infinite }} \cr & {\text{Integration Limits}} \cr & \int_a^\infty {f\left( x \right)dx = \mathop {\lim }\limits_{b \to \infty } } \int_a^b {f\left( x \right)} dx,{\text{ so}} \cr & \int_0^\infty {\frac{{{e^x}}}{{1 + {e^x}}}dx} = \mathop {\lim }\limits_{b \to \infty } \int_0^b {\frac{{{e^x}}}{{1 + {e^x}}}dx} \cr & {\text{Integrating}} \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {\ln \left( {1 + {e^x}} \right)} \right]_0^b \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {\ln \left( {1 + {e^b}} \right) - \ln \left( {1 + {e^0}} \right)} \right] \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {\ln \left( {1 + {e^b}} \right) - \ln \left( 2 \right)} \right] \cr & {\text{Evaluate the limit}} \cr & = \ln \left( {1 + {e^\infty }} \right) - \ln \left( 2 \right) \cr & = \infty \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.