Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 11

Answer

Improper, diverges.

Work Step by Step

$f(x)=\displaystyle \frac{1}{(x-3)^{3/2}}$ has an infinite discontinuity at $x=1\in[0,2]$ so case 3 of Improper Integrals with Infinite Discontinuities applies. 3. If $f$ is continuous on the interval $[a, b]$, except for some $c$ in $(a, b)$ at which $f$ has an infinite discontinuity, then $\displaystyle \int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx$. $\displaystyle \int_{0}^{2}\frac{1}{(x-1)^{2}}dx=\lim_{b\rightarrow 1^{-}}\int_{0}^{b}\frac{1}{(x-1)^{2}}d\mathrm{x}+\lim_{c\rightarrow 1^{+}}\int_{c}^{2}\frac{1}{(x-1)^{2}}dx$ $\displaystyle \left[\begin{array}{ll} u=\frac{1}{x-1} & \\ du=-\frac{1}{(x-1)^{2}}dx & \end{array}\right],\quad\int\frac{1}{(x-1)^{2}}dx=\int-du.$ $\displaystyle \int_{0}^{2}\frac{1}{(x-1)^{2}}dx=\lim_{b\rightarrow 1^{-}}[-\frac{1}{x-1}]_{0}^{b}+\lim_{c\rightarrow 1^{+}}[-\frac{1}{x-1}]_{c}^{2}$ $=\displaystyle \lim_{b\rightarrow 1^{-}}[-\frac{1}{b-1}-1] +\lim_{c\rightarrow 1^{+}}[-\frac{1}{2-1}+\frac{1}{c-1}] $ $=(\infty-1)+(-1+\infty)$ Diverges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.