Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 25

Answer

$$\frac{1}{{2{{\left( {\ln 4} \right)}^2}}}$$

Work Step by Step

$$\eqalign{ & \int_4^\infty {\frac{1}{{x{{\left( {\ln x} \right)}^3}}}dx} \cr & {\text{By the Definition of Improper Integrals with Infinite }} \cr & {\text{Integration Limits}} \cr & {\text{Apply }}\int_a^\infty {f\left( x \right)dx = \mathop {\lim }\limits_{b \to \infty } } \int_a^b {f\left( x \right)} dx,{\text{ so}} \cr & \int_4^\infty {\frac{1}{{x{{\left( {\ln x} \right)}^3}}}dx} = \mathop {\lim }\limits_{b \to \infty } \int_4^b {{{\left( {\ln x} \right)}^{ - 3}}\left( {\frac{1}{x}} \right)} dx \cr & {\text{Integrate}} \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {\frac{{{{\left( {\ln x} \right)}^{ - 2}}}}{{ - 2}}} \right]_4^b = - \frac{1}{2}\mathop {\lim }\limits_{b \to \infty } \left[ {\frac{1}{{{{\left( {\ln x} \right)}^2}}}} \right]_4^b \cr & {\text{Use the Fundamental Theorem of Calculus}} \cr & = - \frac{1}{2}\mathop {\lim }\limits_{b \to \infty } \left[ {\frac{1}{{{{\left( {\ln b} \right)}^2}}} - \frac{1}{{{{\left( {\ln 4} \right)}^2}}}} \right] \cr & = - \frac{1}{2}\mathop {\lim }\limits_{b \to \infty } \left[ {\frac{1}{{{{\left( {\ln b} \right)}^2}}} - \frac{1}{{{{\left( {\ln 4} \right)}^2}}}} \right] \cr & {\text{Evaluate the limit}} \cr & = - \frac{1}{2}\left[ {\frac{1}{{{{\left( {\ln \infty } \right)}^2}}} - \frac{1}{{{{\left( {\ln 4} \right)}^2}}}} \right] \cr & {\text{Simplify}} \cr & = - \frac{1}{2}\left( {\frac{1}{\infty } - \frac{1}{{{{\left( {\ln 4} \right)}^2}}}} \right) \cr & = \frac{1}{{2{{\left( {\ln 4} \right)}^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.