Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 42

Answer

$$\frac{\pi }{3}$$

Work Step by Step

$$\eqalign{ & \int_3^6 {\frac{1}{{\sqrt {36 - {x^2}} }}} dx \cr & \frac{1}{{\sqrt {36 - {x^2}} }}{\text{ has an infinite discontinuity at }}x = 6,{\text{so we can write}} \cr & \int_3^6 {\frac{1}{{\sqrt {36 - {x^2}} }}} dx = \mathop {\lim }\limits_{b \to {6^ - }} \int_3^b {\frac{1}{{\sqrt {36 - {x^2}} }}} dx \cr & {\text{Integrate, use }}\int {\frac{1}{{\sqrt {{a^2} - {u^2}} }}} dx = \arcsin \left( {\frac{x}{a}} \right) + C \cr & \mathop {\lim }\limits_{b \to {6^ - }} \int_3^b {\frac{1}{{\sqrt {36 - {x^2}} }}} d\theta = \mathop {\lim }\limits_{b \to {6^ - }} \left[ {\arcsin \left( {\frac{x}{6}} \right)} \right]_3^b \cr & = \mathop {\lim }\limits_{b \to {6^ - }} \left[ {\arcsin \left( {\frac{b}{6}} \right) - \arcsin \left( {\frac{3}{6}} \right)} \right] \cr & = \mathop {\lim }\limits_{b \to {6^ - }} \left[ {\arcsin \left( {\frac{b}{6}} \right) - \frac{\pi }{6}} \right] \cr & {\text{Evaluate the limit when }}b \to 6 \cr & = \arcsin \left( {\frac{6}{6}} \right) - \frac{\pi }{6} \cr & = \frac{\pi }{2} - \frac{\pi }{6} \cr & = \frac{\pi }{3} \cr & {\text{The following graph confirms the result}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.