Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 41

Answer

$$\frac{\pi }{3}$$

Work Step by Step

$$\eqalign{ & \int_2^4 {\frac{2}{{x\sqrt {{x^2} - 4} }}} d\theta \cr & \frac{2}{{x\sqrt {{x^2} - 4} }}{\text{ has an infinite discontinuity at }}x = 2,{\text{so we can write}} \cr & \int_2^4 {\frac{2}{{x\sqrt {{x^2} - 4} }}} d\theta = \mathop {\lim }\limits_{b \to {2^ + }} \int_b^4 {\frac{2}{{x\sqrt {{x^2} - 4} }}} dx \cr & {\text{Integrate, use }}\int {\frac{1}{{x\sqrt {{x^2} - {a^2}} }}} dx = \frac{1}{a}\operatorname{arcsec} \left( {\frac{x}{a}} \right) + C \cr & \mathop {\lim }\limits_{b \to {2^ + }} \int_b^4 {\frac{2}{{x\sqrt {{x^2} - 4} }}} d\theta = \mathop {\lim }\limits_{b \to {2^ + }} 2\left[ {\frac{1}{2}\operatorname{arcsec} \left( {\frac{x}{2}} \right)} \right]_b^4 \cr & = \mathop {\lim }\limits_{b \to {2^ + }} \left[ {\operatorname{arcsec} \left( {\frac{x}{2}} \right)} \right]_b^4 \cr & = \mathop {\lim }\limits_{b \to {2^ + }} \left[ {\operatorname{arcsec} \left( {\frac{4}{2}} \right) - \operatorname{arcsec} \left( {\frac{b}{2}} \right)} \right] \cr & = \mathop {\lim }\limits_{b \to {2^ + }} \left[ {\frac{\pi }{3} - \operatorname{arcsec} \left( {\frac{b}{2}} \right)} \right] \cr & {\text{Evaluate the limit when }}b \to {2^ + } \cr & = \frac{\pi }{3} - \operatorname{arcsec} \left( {\frac{2}{2}} \right) \cr & = \frac{\pi }{3} - 0 \cr & = \frac{\pi }{3} \cr & {\text{The following graph confirms the result}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.