Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 32

Answer

$${\text{diverges}}$$

Work Step by Step

$$\eqalign{ & \int_0^\infty {\sin \left( {\frac{x}{2}} \right)} dx \cr & {\text{By the Definition of Improper Integrals with Infinite }} \cr & {\text{Integration Limits}} \cr & \int_a^\infty {f\left( x \right)dx = \mathop {\lim }\limits_{b \to \infty } } \int_a^b {f\left( x \right)} dx,{\text{ so}} \cr & \int_0^\infty {\sin \left( {\frac{x}{2}} \right)} dx = \mathop {\lim }\limits_{b \to \infty } \int_0^b {\sin \left( {\frac{x}{2}} \right)dx} \cr & {\text{Integrating}} \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ { - 2\cos \left( {\frac{x}{2}} \right)} \right]_0^b \cr & = - 2\mathop {\lim }\limits_{b \to \infty } \left[ {\cos \left( {\frac{b}{2}} \right) - \cos \left( {\frac{0}{2}} \right)} \right] \cr & = - 2\mathop {\lim }\limits_{b \to \infty } \left[ {\cos \left( {\frac{b}{2}} \right) - 1} \right] \cr & {\text{Evaluate the limit}} \cr & = - 2\mathop {\lim }\limits_{b \to \infty } \left[ {\cos \left( {\frac{b}{2}} \right)} \right] + 2\mathop {\lim }\limits_{b \to \infty } 1 \cr & {\text{The }}\mathop {\lim }\limits_{x \to \infty } \cos x{\text{ does not exist, so the integral diverges}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.