Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 44

Answer

$${\text{the improper integral diverges}}$$

Work Step by Step

$$\eqalign{ & \int_0^5 {\frac{1}{{25 - {x^2}}}} dx \cr & \frac{1}{{25 - {x^2}}}{\text{ has an infinite discontinuity at }}x = 5,{\text{so we can write}} \cr & \int_0^5 {\frac{1}{{25 - {x^2}}}} dx = \mathop {\lim }\limits_{b \to {5^ - }} \int_0^b {\frac{1}{{25 - {x^2}}}} dx \cr & {\text{Integrate by tables, use }}\int {\frac{1}{{{a^2} - {x^2}}}} dx = \frac{1}{{2a}}\ln \left| {\frac{{x + a}}{{x - a}}} \right| + C \cr & \mathop {\lim }\limits_{b \to {5^ - }} \int_0^b {\frac{1}{{25 - {x^2}}}} dx = \frac{1}{{2\left( 5 \right)}}\mathop {\lim }\limits_{b \to {5^ - }} \left[ {\ln \left| {\frac{{x + 5}}{{x - 5}}} \right|} \right]_0^b \cr & = \frac{1}{{10}}\mathop {\lim }\limits_{b \to {5^ - }} \left[ {\ln \left| {\frac{{x + 5}}{{x - 5}}} \right|} \right]_0^b \cr & = \frac{1}{{10}}\mathop {\lim }\limits_{b \to {5^ - }} \left[ {\ln \left| {\frac{{b + 5}}{{b - 5}}} \right| - \ln \left| {\frac{{0 + 5}}{{0 - 5}}} \right|} \right] \cr & = \frac{1}{{10}}\mathop {\lim }\limits_{b \to {5^ - }} \left[ {\ln \left| {\frac{{b + 5}}{{b - 5}}} \right|} \right] \cr & {\text{Evaluate the limit when }}b \to {5^ - } \cr & = \frac{1}{{10}}\left[ {\ln \left| {\frac{{5 + 5}}{{0 - 5}}} \right|} \right] \cr & = \frac{1}{{10}}\left( \infty \right) \cr & = \infty \cr & {\text{So}},{\text{ the improper integral diverges}}. \cr & {\text{The following graph confirms the result}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.