Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 27

Answer

$$\pi $$

Work Step by Step

$$\eqalign{ & \int_{ - \infty }^\infty {\frac{4}{{16 + {x^2}}}dx} \cr & {\text{By Definition }}\int_{ - \infty }^\infty {f\left( x \right)} dx = \int_{ - \infty }^c {f\left( x \right)} dx + \int_c^\infty {f\left( x \right)} dx \cr & \int_{ - \infty }^\infty {\frac{4}{{16 + {x^2}}}dx} = \int_{ - \infty }^0 {\frac{4}{{16 + {x^2}}}dx} + \int_0^\infty {\frac{4}{{16 + {x^2}}}dx} \cr & {\text{By the Definition of Improper Integrals with Infinite }} \cr & {\text{Integration Limits}} \cr & \int_a^\infty {f\left( x \right)dx = \mathop {\lim }\limits_{b \to \infty } } \int_a^b {f\left( x \right)} dx,{\text{ so}} \cr & and \cr & \int_{ - \infty }^b {f\left( x \right)dx = \mathop {\lim }\limits_{a \to - \infty } } \int_a^b {f\left( x \right)} dx,{\text{ so}} \cr & = \mathop {\lim }\limits_{a \to - \infty } \int_a^0 {\frac{4}{{16 + {x^2}}}dx} + \mathop {\lim }\limits_{b \to \infty } \int_0^b {\frac{4}{{16 + {x^2}}}dx} \cr & {\text{Integrating}} \cr & = 4\mathop {\lim }\limits_{a \to - \infty } \left[ {\frac{1}{4}{{\tan }^{ - 1}}\left( {\frac{x}{4}} \right)} \right]_a^0 + 4\mathop {\lim }\limits_{b \to \infty } \left[ {\frac{1}{4}{{\tan }^{ - 1}}\left( {\frac{x}{4}} \right)} \right]_0^b \cr & = \mathop {\lim }\limits_{a \to - \infty } \left[ {{{\tan }^{ - 1}}\left( {\frac{x}{4}} \right)} \right]_a^0 + \mathop {\lim }\limits_{b \to \infty } \left[ {{{\tan }^{ - 1}}\left( {\frac{x}{4}} \right)} \right]_0^b \cr & = \mathop {\lim }\limits_{a \to - \infty } \left[ {{{\tan }^{ - 1}}\left( {\frac{0}{4}} \right) - {{\tan }^{ - 1}}\left( {\frac{a}{4}} \right)} \right] + \mathop {\lim }\limits_{b \to \infty } \left[ {{{\tan }^{ - 1}}\left( {\frac{b}{4}} \right) - {{\tan }^{ - 1}}\left( {\frac{0}{4}} \right)} \right] \cr & = \mathop {\lim }\limits_{a \to - \infty } \left[ { - {{\tan }^{ - 1}}\left( {\frac{a}{4}} \right)} \right] + \mathop {\lim }\limits_{b \to \infty } \left[ {{{\tan }^{ - 1}}\left( {\frac{b}{4}} \right)} \right] \cr & {\text{Evaluate the limits}} \cr & = - {\tan ^{ - 1}}\left( {\frac{{ - \infty }}{4}} \right) + {\tan ^{ - 1}}\left( {\frac{\infty }{4}} \right) \cr & = - \left( { - \frac{\pi }{2}} \right) + \left( {\frac{\pi }{2}} \right) \cr & = \pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.