Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 28

Answer

$$\infty $$

Work Step by Step

$$\eqalign{ & \int_0^\infty {\frac{{{x^3}}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} \cr & {\text{By the Definition of Improper Integrals with Infinite }} \cr & {\text{Integration Limits}} \cr & \int_a^\infty {f\left( x \right)dx = \mathop {\lim }\limits_{b \to \infty } } \int_a^b {f\left( x \right)} dx,{\text{ so}} \cr & \int_0^\infty {\frac{{{x^3}}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} = \mathop {\lim }\limits_{b \to \infty } \int_0^b {\frac{{{x^3}}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} \cr & {\text{Integrating }}\int {\frac{{{x^3}}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} \cr & {\text{Let }}u = {x^2} + 1,{\text{ }}du = 2xdx,{\text{ }}dx = \frac{1}{{2x}}du \cr & \int {\frac{{{x^3}}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} = \int {\frac{{{x^3}}}{{{u^2}}}\left( {\frac{1}{{2x}}} \right)du} = \int {\frac{{{x^2}}}{{{u^2}}}\left( {\frac{1}{2}} \right)du} \cr & = \frac{1}{2}\int {\frac{{u - 1}}{{{u^2}}}du} = \frac{1}{2}\int {\left( {\frac{1}{u} - \frac{1}{{{u^2}}}} \right)} du \cr & = \frac{1}{2}\ln \left| u \right| + \frac{1}{u} + C \cr & = \frac{1}{2}\ln \left( {{x^2} + 1} \right) + \frac{1}{{{x^2} + 1}} + C \cr & \cr & \mathop {\lim }\limits_{b \to \infty } \int_0^b {\frac{{{x^3}}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} = \mathop {\lim }\limits_{b \to \infty } \left[ {\frac{1}{2}\ln \left( {{x^2} + 1} \right) + \frac{1}{{{x^2} + 1}}} \right]_0^b \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {\frac{1}{2}\ln \left( {{b^2} + 1} \right) + \frac{1}{{{b^2} + 1}} - \frac{1}{2}\ln \left( {{0^2} + 1} \right) - \frac{1}{{{0^2} + 1}}} \right] \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {\frac{1}{2}\ln \left( {{b^2} + 1} \right) + \frac{1}{{{b^2} + 1}} - 1} \right] \cr & {\text{Evaluate the limit}} \cr & = \frac{1}{2}\ln \left( {{\infty ^2} + 1} \right) + \frac{1}{{{\infty ^2} + 1}} - 1 \cr & = \frac{1}{2}\left( \infty \right) + 0 - 1 \cr & = \infty \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.