Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 39

Answer

$${\text{the improper integral diverges}}$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /2} {\tan \theta } d\theta \cr & \tan \theta {\text{ is not defined at }}x = \pi /2,{\text{so we can write}} \cr & \int_0^{\pi /2} {\tan \theta } d\theta = \mathop {\lim }\limits_{b \to \pi /{2^ - }} \int_0^b {\tan \theta } d\theta \cr & {\text{Integrate}} \cr & \mathop {\lim }\limits_{b \to \pi /{2^ - }} \int_0^b {\tan \theta } d\theta = \mathop {\lim }\limits_{b \to \pi /{2^ - }} \left[ { - \ln \left| {\cos \theta } \right|} \right]_0^b \cr & = \mathop {\lim }\limits_{b \to \pi /{2^ - }} \left[ { - \ln \left| {\cos b} \right| + \ln \left| {\cos 0} \right|} \right] \cr & = \mathop {\lim }\limits_{b \to \pi /{2^ - }} \left[ { - \ln \left| {\cos b} \right| + \ln \left| 1 \right|} \right] \cr & = - \mathop {\lim }\limits_{b \to \pi /{2^ - }} \left[ {\ln \left| {\cos b} \right|} \right] \cr & {\text{Evaluate the limit when }}b \to \pi /{2^ - } \cr & = - \left[ {\ln \left| {\cos \left( {\frac{\pi }{2}} \right)} \right|} \right] \cr & = - \infty \cr & {\text{So}},{\text{ the improper integral diverges}}. \cr & {\text{The following graph confirms the result}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.