Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 21

Answer

Diverges.

Work Step by Step

From the Definition of Improper Integrals with Infinite Integration Limits Case 2. If $f$ is continuous on the interval $(-\infty, b]$, then $\displaystyle \int_{-\infty}^{b}f(x)dx=\lim_{a\rightarrow-\infty}\int_{a}^{b}f(x)dx$. --- $I=\displaystyle \int_{-\infty}^{0}xe^{-4x}dx=\lim_{b\rightarrow-\infty}\int_{b}^{0}xe^{-4x}dx$ ...Integration by parts $\displaystyle \int xe^{-4x}dx=\int udv\quad\left[\begin{array}{ll} u=x & dv=e^{-4x}\\ du=dx & v=-\frac{1}{4}e^{-4x} \end{array}\right]=uv-\displaystyle \int vdu$ $=-\displaystyle \frac{xe^{-4x}}{4}+\frac{1}{4}\int e^{-4x}dx$ $=-\displaystyle \frac{xe^{-4x}}{4}+\frac{1}{-16}e^{-4x}+C$ $I=\displaystyle \lim_{b\rightarrow-\infty}[\frac{-xe^{-4x}}{4}-\frac{1}{16}e^{-4x}]_{b}^{0}$ $=\displaystyle \lim_{b\rightarrow-\infty}[-\frac{1}{16}-(-\frac{b}{4}-\frac{1}{16}e^{-4b})]$ $=-\infty$ Diverges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.