Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 12

Answer

Improper, converges to $\displaystyle \frac{1}{3}$.

Work Step by Step

The integral has form: (Improper Integrals with Infinite Integration Limits) 2. If $f$ is continuous on the interval $(-\infty, b]$, then $\displaystyle \int_{-\infty}^{b}f(x)dx=\lim_{a\rightarrow-\infty}\int_{a}^{b}f(x)dx$. --- $\displaystyle \int_{-\infty}^{0}e^{3x}dx=\lim_{a\rightarrow-\infty}\int_{b}^{0}e^{3x}dx$ $=\displaystyle \lim_{a\rightarrow-\infty}[\frac{1}{3}e^{3x}]_{a}^{0}$ $=\displaystyle \lim_{a\rightarrow-\infty}[\frac{1}{3}-\frac{1}{3}e^{3a}]$ $=\displaystyle \frac{1}{3}-0$ Converges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.