Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 29

Answer

$$\frac{\pi }{4}$$

Work Step by Step

$$\eqalign{ & \int_0^\infty {\frac{1}{{{e^x} + {e^{ - x}}}}dx} \cr & {\text{Multiply the numerator and denominator by }}{e^x} \cr & = \int_0^\infty {\frac{{{e^x}}}{{{e^{2x}} + 1}}dx} \cr & {\text{By the Definition of Improper Integrals with Infinite }} \cr & {\text{Integration Limits}} \cr & \int_0^\infty {\frac{{{e^x}}}{{{e^{2x}} + 1}}dx} = \mathop {\lim }\limits_{b \to \infty } \int_0^b {\frac{{{e^x}}}{{{e^{2x}} + 1}}dx} \cr & {\text{Integrating}} \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {{{\tan }^{ - 1}}\left( {{e^x}} \right)} \right]_0^b \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {{{\tan }^{ - 1}}\left( {{e^b}} \right) - {{\tan }^{ - 1}}\left( {{e^0}} \right)} \right] \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {{{\tan }^{ - 1}}\left( {{e^b}} \right) - \frac{\pi }{4}} \right] \cr & {\text{Evaluate the limit}} \cr & = {\tan ^{ - 1}}\left( {{e^\infty }} \right) - \frac{\pi }{4} \cr & = \frac{\pi }{2} - \frac{\pi }{4} \cr & = \frac{\pi }{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.