Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 33

Answer

$${\text{the improper integral diverges}}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\frac{1}{{{x^2}}}} dx \cr & \frac{1}{{{x^2}}}{\text{ has an infinite discontinuity at }}x = 0,{\text{ so we can write}} \cr & \int_0^1 {\frac{1}{{{x^2}}}} dx = \mathop {\lim }\limits_{b \to {0^ + }} \int_b^1 {\frac{1}{{{x^2}}}} dx \cr & {\text{Integrate}} \cr & = \mathop {\lim }\limits_{b \to {0^ + }} \left[ { - \frac{1}{x}} \right]_b^1 \cr & = \mathop {\lim }\limits_{b \to {0^ + }} \left[ { - \frac{1}{1} - \frac{1}{b}} \right] \cr & = \mathop {\lim }\limits_{b \to {0^ + }} \left[ { - 1 + \frac{1}{b}} \right] \cr & {\text{Evaluate the limit}} \cr & = - 1 + \frac{1}{{{0^ + }}} \cr & = - 1 + \infty \cr & = \infty \cr & {\text{So}},{\text{ the improper integral diverges}}. \cr & {\text{The following graph confirms the result}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.