Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 575: 19

Answer

Diverges, $\infty$

Work Step by Step

Evaluate the improper integral and see if it converges or diverges $\int ^{\infty} _1 \frac{3}{\sqrt[3] x} dx$ Rewrite the integral $\lim\limits_{b \to \infty} \int^b_1 \frac{3}{\sqrt[3] x} dx$ $\lim\limits_{b \to \infty} [\frac{9}{2}x^{\frac{2}{3}} ]^b_1 $ $\lim\limits_{b \to \infty} (\frac{9}{2} b^{\frac{2}{3}} - \frac{9}{2})$ Evaluate the limit $\infty - \frac{9}{2}$ $\infty$ , Diverges
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.