Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 8

Answer

$\begin{align*} \displaystyle \coth^{2}x-\mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}^{2}x&=\displaystyle \frac{\cosh^{2}x}{\sinh^{2}x}-\frac{1}{\sinh^{2}x} \\ & =\displaystyle \frac{\cosh^{2}x-1}{\sinh^{2}x}\tag{ $\cosh^{2}x-\sinh^{2}x=1$ }\\ &=\displaystyle \frac{\sinh^{2}x}{\sinh^{2}x} \\ &=1 \end{align*}$

Work Step by Step

Definitions of the Hyperbolic Functions $\displaystyle \sinh x=\frac{e^{x}-e^{-x}}{2} \qquad \mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}\ x=\displaystyle \frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}},\quad x\neq 0$ $\displaystyle \cosh x=\frac{e^{x}+e^{-x}}{2} \qquad \mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}\ x=\displaystyle \frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}}$ $\displaystyle \tanh x=\frac{\sinh x}{\cosh x} =\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \qquad \coth x=\frac{1}{\tanh x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}},\quad x\neq 0$ And, we use $ \qquad \cosh^{2}x-\sinh^{2}x=1$ $(\displaystyle \frac{e^{2x}+2+e^{-2x}+4}{4}-\frac{e^{2x}-2+e^{-2x}+4}{4}=\frac{2+2}{4}=1)$ ---- $\begin{align*} \displaystyle \coth^{2}x-\mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}^{2}x&=\displaystyle \frac{\cosh^{2}x}{\sinh^{2}x}-\frac{1}{\sinh^{2}x} \\ & =\displaystyle \frac{\cosh^{2}x-1}{\sinh^{2}x}\tag{ \cosh^{2}x-\sinh^{2}x=1 }\\ &=\displaystyle \frac{\sinh^{2}x}{\sinh^{2}x} \\ &=1 \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.