Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 32

Answer

$$g'\left( x \right) = - 6{\text{sec}}{{\text{h}}^2}3x\tanh 3x$$

Work Step by Step

$$\eqalign{ & g\left( x \right) = {\text{sec}}{{\text{h}}^2}3x \cr & {\text{Differentiate}} \cr & g'\left( x \right) = \frac{d}{{dx}}\left[ {{\text{sec}}{{\text{h}}^2}3x} \right] \cr & {\text{By the chain rule}} \cr & g'\left( x \right) = 2{\text{sech}}3x\frac{d}{{dx}}\left[ {{\text{sech}}3x} \right] \cr & {\text{Using the Derivatives and Integrals of Hyperbolic Functions}} \cr & g'\left( x \right) = 2{\text{sech}}3x\left( { - {\text{sech}}3x\tanh 3x} \right)\left( 3 \right) \cr & g'\left( x \right) = - 6{\text{sech}}3x\left( {{\text{sech}}3x\tanh 3x} \right) \cr & g'\left( x \right) = - 6{\text{sec}}{{\text{h}}^2}3x\tanh 3x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.