Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 53

Answer

$$\operatorname{csch} \left( {\frac{1}{x}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\operatorname{csch} \left( {1/x} \right)\coth \left( {1/x} \right)}}{{{x^2}}}} dx \cr & {\text{Let }}u = \frac{1}{x},{\text{ }}du = - \frac{1}{{{x^2}}}dx,{\text{ }}dx = - {x^2}du \cr & {\text{Substituting}} \cr & \int {\frac{{\operatorname{csch} \left( {1/x} \right)\coth \left( {1/x} \right)}}{{{x^2}}}} dx = \int {\frac{{\operatorname{csch} u\coth u}}{{{x^2}}}} \left( { - {x^2}} \right)du \cr & = - \int {\operatorname{csch} u\coth u} du \cr & {\text{Integrating}} \cr & = - \left( { - \operatorname{csch} u} \right) + C \cr & = \operatorname{csch} u + C \cr & {\text{Write in terms of }}x \cr & = \operatorname{csch} \left( {\frac{1}{x}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.