Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 57

Answer

$$\frac{1}{5}\ln \left( 3 \right)$$

Work Step by Step

$$\eqalign{ & \int_0^4 {\frac{1}{{25 - {x^2}}}} dx \cr & = \int_0^4 {\frac{1}{{{{\left( 5 \right)}^2} - {x^2}}}} dx \cr & {\text{From Theorem 5}}{\text{.20 }}\int {\frac{{du}}{{{a^2} - {u^2}}}} = \frac{1}{{2a}}\ln \left| {\frac{{a + u}}{{a - u}}} \right| + C,{\text{ then}} \cr & \int_0^4 {\frac{1}{{{{\left( 5 \right)}^2} - {x^2}}}} dx = \left[ {\frac{1}{{2\left( 5 \right)}}\ln \left| {\frac{{5 + x}}{{5 - x}}} \right|} \right]_0^4 \cr & = \frac{1}{{10}}\left[ {\ln \left| {\frac{{5 + x}}{{5 - x}}} \right|} \right]_0^4 \cr & {\text{Evaluating}} \cr & = \frac{1}{{10}}\left[ {\ln \left| {\frac{{5 + 4}}{{5 - 4}}} \right| - \ln \left| {\frac{{5 + 0}}{{5 - 0}}} \right|} \right] \cr & = \frac{1}{{10}}\left[ {\ln \left| 9 \right| - \ln \left| 1 \right|} \right] \cr & = \frac{1}{{10}}\ln \left( 9 \right) \cr & {\text{Simplifying}} \cr & = \frac{1}{{10}}\ln \left( {{3^2}} \right) \cr & = \frac{1}{5}\ln \left( 3 \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.