Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 11

Answer

$\begin{align*} 2\displaystyle \sinh x\cosh x&=2(\displaystyle \frac{e^{x}-e^{-x}}{2})(\frac{e^{x}+e^{-x}}{2}) \tag{ numerator= diff. of squares }\\ &=\displaystyle \frac{e^{2x}-e^{-2x}}{2} \\ &=\sinh 2x \end{align*}$

Work Step by Step

Definitions of the Hyperbolic Functions $\displaystyle \sinh x=\frac{e^{x}-e^{-x}}{2} \qquad \mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}\ x=\displaystyle \frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}},\quad x\neq 0$ $\displaystyle \cosh x=\frac{e^{x}+e^{-x}}{2} \qquad \mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}\ x=\displaystyle \frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}}$ ---- $\begin{align*} 2\displaystyle \sinh x\cosh x&=2(\displaystyle \frac{e^{x}-e^{-x}}{2})(\frac{e^{x}+e^{-x}}{2}) \tag{ numerator= diff. of squares }\\ &=\displaystyle \frac{e^{2x}-e^{-2x}}{2} \\ &=\sinh 2x \end{align*}$ So, $\qquad 2\sinh x\cosh x=\sinh 2x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.