Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 46

Answer

$2\sinh\sqrt{x}+C$

Work Step by Step

Use Th.5.18, Derivatives and Integrals of Hyperbolic Functions $\displaystyle \int\cosh udu=\sinh u+C$ ---- $\displaystyle \int\frac{\cosh\sqrt{x}}{\sqrt{x}}dx=\left[\begin{array}{lll} u=\sqrt{x} & & \\ du=\frac{1}{2\sqrt{x}}dx. & \Rightarrow & 2\sqrt{x}du=dx \end{array}\right]$ $=2\displaystyle \int\cosh\underbrace{(\sqrt{x})}_{u}\underbrace{(\frac{1}{2\sqrt{x}})dx}_{du}$ $=2\sinh\sqrt{x}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.