Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 13

Answer

$\sinh x\cosh y+\cosh x\sinh y=\sinh(x+y)$ (please see details in step-by=step)

Work Step by Step

Definitions of the Hyperbolic Functions $\displaystyle \sinh x=\frac{e^{x}-e^{-x}}{2} \qquad \mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}\ x=\displaystyle \frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}},\quad x\neq 0$ $\displaystyle \cosh x=\frac{e^{x}+e^{-x}}{2} \qquad \mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}\ x=\displaystyle \frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}}$ ---- $\begin{align*} \displaystyle \sinh x\cosh y&=(\displaystyle \frac{e^{x}-e^{-x}}{2})(\frac{e^{y}+e^{-y}}{2})\\ &=\displaystyle \frac{e^{x+y}-e^{-x+y}+e^{x-y}-e^{-x-y)}}{4} \\ &=\displaystyle \frac{(e^{x+y}-e^{-(x+y)})-e^{-x+y}+e^{x-y}}{4} \\\\\\ \displaystyle \cosh x\sinh y&=(\displaystyle \frac{e^{x}+e^{-x}}{2})(\frac{e^{y}-e^{-y}}{2}) \\ &=\displaystyle \frac{e^{x+y}+e^{-x+y}-e^{x-y}-e^{-(x+y)}}{4} \\ & =\displaystyle \frac{(e^{x+y}-e^{-(x+y)})+e^{-x+y}-e^{x-y}}{4}\\\\\\ \displaystyle \sinh x\cosh y+\cosh x\sinh y& =\frac{2(e^{x+y}-e^{-(x+y)})}{4}\\ & =\displaystyle \frac{e^{x+y}-e^{-(x+y)}}{2} \\ & =\sinh(x+y) \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.