Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 56

Answer

$$\frac{1}{2} + \frac{1}{4}\sinh \left( 2 \right)$$

Work Step by Step

$$\eqalign{ & \int_0^1 {{{\cosh }^2}x} dx \cr & {\text{From the hyperbolic identities cos}}{{\text{h}}^2}x = \frac{{1 + \cosh 2x}}{2} \cr & \int_0^1 {{{\cosh }^2}x} dx = \int_0^1 {\left( {\frac{{1 + \cosh 2x}}{2}} \right)} dx \cr & = \int_0^1 {\left( {\frac{1}{2} + \frac{1}{2}\cosh 2x} \right)} dx \cr & {\text{Integrating}} \cr & {\text{ = }}\left[ {\frac{1}{2}x + \frac{1}{4}\sinh 2x} \right]_0^1 \cr & {\text{Evaluating}} \cr & {\text{ = }}\left( {\frac{1}{2}\left( 1 \right) + \frac{1}{4}\sinh 2\left( 1 \right)} \right) - \left( {\frac{1}{2}\left( 0 \right) + \frac{1}{4}\sinh 2\left( 0 \right)} \right) \cr & = \frac{1}{2} + \frac{1}{4}\sinh \left( 2 \right) - 0 \cr & = \frac{1}{2} + \frac{1}{4}\sinh \left( 2 \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.