Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 49

Answer

$\ln|\sinh x|+C$

Work Step by Step

Use Th.5.18, Derivatives and Integrals of Hyperbolic Functions $[\sinh u]^{\prime}=(\cosh u)u^{\prime}$ ---- $\displaystyle \int\frac{\cosh x}{\sinh x}dx=\left[\begin{array}{lll} u=\sinh x & & \\ du=(\cosh x)dx. & & \end{array}\right]$ $=\displaystyle \int\underbrace{\frac{1}{\sinh x}}_{u^{-1}}\cdot\underbrace{(\cosh x)dx}_{du}$ $=\displaystyle \int \frac{du}{u}$ $=\ln|u|+C$ $=\ln|\sinh x|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.