Answer
(a)$\qquad 1$
(b)$\qquad 0.648$
Work Step by Step
Definitions
$\displaystyle \sinh x=\frac{e^{x}-e^{-x}}{2} \qquad \mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}\ x=\displaystyle \frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}},\quad x\neq 0$
$\displaystyle \cosh x=\frac{e^{x}+e^{-x}}{2} \qquad \mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}\ x=\displaystyle \frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}}$
$\displaystyle \tanh x=\frac{\sinh x}{\cosh x} =\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \qquad \coth x=\frac{1}{\tanh x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}},\quad x\neq 0$
----
(a)
$\displaystyle \cosh 0=\frac{e^{0}+e^{0}}{2}=1$
(b)
$\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}\ 1=\displaystyle \frac{2}{e+e^{-1}}\approx 0.648$