Answer
$$\eqalign{
& {\text{Relative minimum at }}\left( { - 1.19967, - 0.6627} \right) \cr
& {\text{Relative maximum at }}\left( {1.19967,0.6627} \right) \cr} $$
Work Step by Step
$$\eqalign{
& g\left( x \right) = x\operatorname{sech} x \cr
& {\text{*Calculate the first derivative}} \cr
& g'\left( x \right) = \frac{d}{{dx}}\left[ {x\operatorname{sech} x} \right] \cr
& g'\left( x \right) = - x\operatorname{sech} x\tanh x + \operatorname{sech} x \cr
& {\text{Set }}g'\left( x \right) = 0 \cr
& \operatorname{sech} x\left( {1 - x\tanh x} \right) = 0 \cr
& \operatorname{sech} x = 0{\text{ or }}1 - x\tanh x = 0 \cr
& \operatorname{sech} x{\text{ is always positive, then}} \cr
& 1 - x\tanh x = 0 \cr
& x\tanh x = 1 \cr
& x\left( {\frac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}} \right) = 1 \cr
& {\text{Solving by using a scientific calculator we obtain:}} \cr
& x \approx - 1.19967{\text{ and }}x \approx 1.19967 \cr
& \cr
& *{\text{Calculate the second derivative}} \cr
& g''\left( x \right) = \frac{d}{{dx}}\left[ {f'\left( x \right)} \right] \cr
& g''\left( x \right) = \frac{d}{{dx}}\left[ { - x\operatorname{sech} x\tanh x + \operatorname{sech} x} \right] \cr
& g''\left( x \right) = - x\left( {\operatorname{sech} x{{\operatorname{sech} }^2}x - \operatorname{sech} x{{\tanh }^2}x} \right) - \operatorname{sech} x\tanh x \cr
& - \operatorname{sech} x\tanh x \cr
& \cr
& {\text{*Evaluate the second derivative at }}x = - 1.19967 \cr
& g''\left( { - 1.19967} \right) = 0.6627 > 0 \cr
& {\text{Then by the second derivative test }}\left( {{\text{Theorem 3}}{\text{.9}}} \right) \cr
& g\left( x \right){\text{ has a relative minimum at }}\left( { - 1.19967,g\left( { - 1.19967} \right)} \right) \cr
& g\left( { - 1.19967} \right) = - 0.6627 \cr
& {\text{Relative minimum at }}\left( { - 1.19967, - 0.6627} \right) \cr
& \cr
& {\text{*Evaluate the second derivative at }}x = - 1.19967 \cr
& g''\left( {1.19967} \right) = - 0.6627 < 0 \cr
& {\text{Then by the second derivative test }}\left( {{\text{Theorem 3}}{\text{.9}}} \right) \cr
& g\left( x \right){\text{ has a relative maximum at }}\left( {1.19967,g\left( {1.19967} \right)} \right) \cr
& g\left( {1.19967} \right) = 0.6627 \cr
& {\text{Relative maximum at }}\left( {1.19967,0.6627} \right) \cr
& \cr
& {\text{Graph}} \cr} $$