Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 3

Answer

(a)$\qquad \displaystyle \frac{4}{3}$ (b)$\qquad \displaystyle \frac{13}{12}$

Work Step by Step

Definitions $\displaystyle \sinh x=\frac{e^{x}-e^{-x}}{2} \qquad \mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}\ x=\displaystyle \frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}},\quad x\neq 0$ $\displaystyle \cosh x=\frac{e^{x}+e^{-x}}{2} \qquad \mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}\ x=\displaystyle \frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}}$ $\displaystyle \tanh x=\frac{\sinh x}{\cosh x} =\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \qquad \coth x=\frac{1}{\tanh x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}},\quad x\neq 0$ ---- (a) $\displaystyle \mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}\ (\ln 2)=\frac{2}{e^{\ln 2}-e^{-\ln 2}}\qquad $... $(e^{\ln x}=x)$ ... $(-\ln x=\ln x^{-1})$ $=\displaystyle \frac{2}{2-(\frac{1}{2})}=\frac{\frac{4}{2}}{\frac{3}{2}}=\frac{4}{3}$ (b) $\displaystyle \coth(\ln 5)=\frac{\cosh(\ln 5)}{\sinh(\ln 5)}=\frac{e^{\ln 5}+e^{-\ln 5}}{e^{\mathrm{h}5}-e^{-\ln 5}}\qquad $ $=\displaystyle \frac{5+\frac{1}{5}}{5-(\frac{1}{5})}$ $=\displaystyle \frac{\frac{26}{5}}{\frac{24}{5}} =\frac{26}{24}=\frac{13}{12}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.