Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 43

Answer

$\displaystyle \frac{1}{2}\sinh 2x+C$

Work Step by Step

Use Th.5.18, Derivatives and Integrals of Hyperbolic Functions $\displaystyle \int\cosh udu=\sinh u+C$ ---- $\displaystyle \int\cosh 2xdx=\left[\begin{array}{lll} t=2x & & \\ dt=2dx & \Rightarrow & \frac{1}{2}dt=dx \end{array}\right]$ $=\displaystyle \frac{1}{2}\int\cosh(t)dt$ $=\displaystyle \frac{1}{2}\sinh t+C$ $=\displaystyle \frac{1}{2}\sinh 2x+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.